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Reviews

In 1916, decades before Drosophila would become one
of the most popular models for studying many aspects of

modern biology, the discovery of melanotic tumor-like
granules in mutant larvae by Bridges and Stark first sug-
gested that flies could develop tumors1. Later, sponta-
neous mutations were identified that caused animals to die
at larval stages with overproliferation of certain internal
tissues2,3. Subsequent screens for such a phenotype were
highly successful as dozens of genetic loci were recovered
in Drosophila at a time when few human tumor suppres-
sors had been identified2,4–6. Most of the tumor-causing
mutations that were identified during this time were
defined as tumor suppressor genes because they behaved
as recessive loss-of-function mutations7. Molecular charac-
terization of some of these fly tumor suppressor genes
pointed to the importance of cell–cell communication in
the regulation of cell proliferation3,8,9 (Table 1). 

Despite very promising beginnings, the fly has not received
much attention as a model system for cancer research. Several
factors might have contributed to this outcome. Although the

over-proliferated larval tissues and melanotic tissues that
were observed in the fly mutants had some characters resem-
bling those of human tumors, they lacked the appearance of
the massive in situ overproliferation that is commonly asso-
ciated with most mammalian tumors. Second, the molecular
characterization of these early fly tumor suppressors did not
demonstrate a similarity to the tumor suppressors that had
been identified in humans10,11. Furthermore, characterization
of these fly tumor suppressor genes did not provide an 
obvious connection to the contemporary understanding of
the processes that are involved in tumor formation, such as 
regulation of the cell cycle. Finally, the indiscreet classifica-
tion of some Drosophila genes as tumor suppressors also
contributed to the state of neglect by the general cancer
research community. For example, inactivation of neuro-
genic genes causes hypertrophy of the nervous system.
However, they are not tumor suppressors because 
the phenotype is caused by conversion of epidermal cells
into neurons and not by overproliferation of neuronal 
tissues12. 

Roles of TGFb during C. elegans development

In recent years, Drosophila researchers have developed powerful genetic techniques that allow for the rapid
identification and characterization of genes involved in tumor formation and development. The high level of
gene and pathway conservation, the similarity of cellular processes and the emerging evidence of functional
conservation of tumor suppressors between Drosophila and mammals, argue that studies of tumorigenesis in
flies can directly contribute to the understanding of human cancer. In this review, we explore the historical and
current roles of Drosophila in cancer research, as well as speculate on the future of Drosophila as a model to
investigate cancer-related processes that are currently not well understood. 
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However, a significant number of genes that have been
studied in flies have turned out to be homologs of human
oncogenes and tumor suppressors13 (Table 1). Currently,
at least 76 fly homologs of mammalian cancer genes are
under intensive investigation. Studies of these Drosophila
homologs of known mammalian cancer genes have con-
tributed tremendously towards the understanding of the
developmental functions of these genes, their actions at
the molecular level and the genetic pathways in which
these genes execute their functions. A list of these genes
and their functions that we have compiled can be found 
at http://info.med.yale.edu/genetics/xu/flycancergenes.
The knowledge that we have gained from studying these
Drosophila genes and the biological processes in which
they participate has contributed to our understanding of
the mechanisms of action of their human counterparts. 

Signal transduction pathways are conserved from
flies to humans
Many of the extensively studied signal pathways have
been shown to be conserved from flies to humans. Genetic
studies in Drosophila have contributed significantly in
revealing many of these pathways. For example, the Ras
proto-oncogene pathway was first elucidated by studying
photoreceptor cell development in the Drosophila eye14, as
well as by studying vulval development in Caenorhabditis
elegans15. Because of the conservation of the pathways,
knowledge of fly genes and their genetic pathways are now
contributing to cancer research in humans. For example,
the identification of Patched as the tumor suppressor gene
that is mutated in the nevoid basal cell carcinoma 

syndrome has prompted interest in the Drosophila
patched/hedgehog pathway for clues as to what other path-
way components might act as tumor suppressors or onco-
genes in humans. At least three additional members of the
patched/hedgehog pathway have now been implicated in
mammalian tumor formation16–19.

Although many of the signal transduction pathways
that are involved in tumorigenesis are conserved from 
C. elegans to humans, the biological functions of some of
these pathways might vary between different organisms.
For example, in Drosophila and humans, the Ras pathway
is involved both in cell proliferation and in cell fate deter-
mination, whereas in C. elegans it is only involved in cell
fate determination20,21. Moreover, cell fate determination
in C. elegans is more lineage dependent, suggesting that
some of the pathways that are involved in tissue pattern-
ing in humans will be absent or will function differently in
C. elegans. In fact, sequencing of the C. elegans genome
has not identified some of the key components in the
hedgehog signaling pathway22. These findings suggest
that, as a model organism, Drosophila has a unique role to
play in the investigation of human tumor biology.

The biology of Drosophila provides a valid model
for cancer research
The imaginal discs of Drosophila provide researchers with
an excellent opportunity to study the development of cells
whose biological properties are similar to those of mam-
malian cells that are susceptible to cancer. Imaginal discs
are sacs of specialized epithelial cells that give rise to most
of the structures in the adult fly. These discs are single-cell

TABLE 1. Cancer-related genes in Drosophila melanogaster

Fly genes homologous to Fly genes homologous to Fly genes that cause tumor growth or 
mammalian oncogenes mammalian tumor suppressor genes over-proliferation and their mammalian homologs

Fly genes Mammalian gene Fly genes Mammalian gene Fly genes Mammalian gene 
or product or product or product

armadillo b-catenin D-APC APC air8 S6 ribosomal protein
D. Abl c-abl caudal CDX2 bag-of-marbles ?
D. Akt Akt frazzled DCC benign gonial cell neoplasm ?
aurora aurora 1, aurora 2, AIM-1 gigas TSC2 cactus IkB
homothorax Meis1 haywire ERCC3 costal-2 ?
Dcbl c-cbl klumpfuss WT-1 discs large hDlg, NE-Dlg
Dcrk c-crk medea DPC4 expanded ?
ci Gli1, Gli2, Gli3 mei-41 ATM fat FAT
cyclin D cyclin D/PRAD1 Merlin NF2 hyperplastic discs/l(3)c43 UBE3A
dorsal NF-kB/Rel family D.NF1 NF1 lats Lats1, Lats2
D.E2F (D.E2F1DP) E2F patched ptch l(1)malignant ?
extradenticle Pbx1 PP2A-29B PPP2RIB l(2)k07918 ?
hopscotch Jak kinase D.PTEN PTEN/MMAC l(2)brain tumor ?
D.jun c-jun D.p16 p16(INK4a)/MTS1 l(2)giant disc ?
kayak c-fos Rbf pRB l(2)giant larvae LLGL1, LLGL2
D.myb myb spellchecker hMSH2 l(2)talc ?
diminutive c-Myc D.Xpa XPA l(3)giant larvae ?
Notch hNotch1/TAN1 D.XPD XPD/ERCC2 l(3)malignant blood neoplasm-1 loricrin
pitchoune MrDb l(3)malignant braintumor ?
polo Polo-like kinase l(3)discs overgrown CSNK1D
Polycomb hPc1, hPc2 multi sex combs ?
Ras Ras l(1) malignant blood neoplasm ?
D.ret ret oho23B RPS21
smoothened smo ovarian tumors ?
Src42A, Src64B c-src pendulin/oho31 ?
string cdc25 proliferation disrupter ?
trithorax ALL-1 l(2) tumorous imaginal discs H.Tid-1
D.TCF TCF tu(2)91k ?
torpedo c-erbB-2 tumor(3)be ?

A summary of functions and mutant phenotypes for the genes listed above can be found at http://info.med.yale.edu/genetics/xu/flycancergenes.
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layer structures that proliferate during larval stages to pro-
duce mature discs that have characteristic morphologies23

and that differentiate into adult structures. The specialized
epithelial cells that undergo proliferation and differen-
tiation are diploid and have a cell cycle similar to that 
of mammalian cells, consisting of G1, S, G2 and M
phases24,25. The similarity between the fly and mammalian
cell cycle is not restricted simply to the general organiz-
ational level; the conservation also exists at the molecular
level. The fundamental cell-cycle machinery, the cyclins
(A-, B-, D- and E-types) and their cyclin-dependent kinase
partners (Cdk1, Cdk2, Cdk4 or Cdk6), is highly con-
served between flies and mammals25. The molecular con-
servation of the cell cycle also extends to cell-cycle regu-
latory components as well. For example, many
mammalian cell-cycle regulators, such as the retinoblas-
toma protein (pRb) and E2F also have Drosophila
homologs [i.e. RBF (Ref. 26) and dE2F (Ref. 27); Table 1].
The similarity between Drosophila and human cell-cycle
machinery and regulatory pathways suggests that
Drosophila can serve as a model in which to study the
process of proliferation during tumorigenesis.

The mechanism of cell fate determination, which con-
tributes to tumorigenesis in mammals, can also be studied
in fly imaginal discs. The differentiation of imaginal disc
cells to produce the adult structures occurs as a result of
communication with surrounding cells through a combi-
nation of direct cell–cell interactions and long-range sig-
naling28,29. This mosaic type of cell fate specification is
very similar to the way cell fate is determined in most
mammalian tissues30. It is clear that most of the molecular
pathways that are involved in cell fate determination are
conserved between flies and mammals. For example, the
Notch transmembrane receptor has been shown to govern
cell fate choice in Drosophila and vertebrates through a
similar cell–cell communication mechanism31. Interestingly,
mutations in human Notch homologs have been impli-
cated in T-cell acute lymphoblastic leukemia/lymph-
omas32. Recently, it has also been demonstrated that
altered Notch activity in Drosophila can result in overpro-
liferation33. Thus, it appears that the biochemical path-
ways and the processes that regulate cell fate determi-
nation are conserved from flies to humans. 

In addition to the imaginal discs, the Drosophila
embryo also provides an excellent system for the study of
cell proliferation during development. Since both develop-
mental events and cell cycle progression during
Drosophila embryogenesis have been well documented,
this system provides advantages for gaining insight of
mechanisms that coordinate cell proliferation and other
developmental events34. The Drosophila ovarium is also a
great system to dissect the developmental regulation of cell
proliferation, especially for the germline stem cells35,36.

Using Drosophila genetics to study tumorigenesis
Recent advances in experimental techniques now offer
unique advantages to examine the developmental context
of cancer-causing genes. For example, the effects of
ectopic gene expression can be studied easily in the fly.
This is useful for studying the etiology of tumors because
oncogenes are often either aberrantly activated (i.e. Ras)
or overexpressed (i.e. cyclin D). Fly researchers can study
the biology of gene overexpression without killing the ani-
mal by expressing the gene of interest ectopically using a
specific promoter. The fly system is unique in that it offers

a wide range of well-characterized promoters to choose
from, including ubiquitous promoters (such as the heat-
shock or actin promoters) or tissue-specific promoters
(such as neuronal specific or eye-specific promoters).
Expression can also be controlled temporally by inducing
a heat-shock promoter during a time range of interest. The
diversity of available tissue-specific promoters allows the
overexpression of a gene of interest to be studied without
causing lethality. Similarly, a gene can be modified in vitro
to reflect oncogenic mutations, such as deletions or point
mutations, and assayed for oncogenic activity in vivo; this
technique has been used to confirm that a mutant Ret gene
that is found in multiple endocrine neoplasia 2B (MEN2B)
tumors is hyperactivated37.

Introduction of the yeast UAS/GAL4 system into the fly
has made such ectopic expression studies easier and more
versatile38. With the UAS/GAL4 system, only the construc-
tion of a UAS–cDNA construct that drives the gene of
interest is required. A fly line carrying the UAS–cDNA
construct can then be crossed into any number of the
existing fly lines that express GAL4 in a tissue-specific pat-
tern. The progeny from such a cross can then express the
gene of interest in the tissue of choice. These advances
have allowed for the development of ectopic activation
screens39,40 in which the UAS element is inserted randomly
into the genome of the fly. Screening for interesting over-
expression phenotypes can then be carried out. Such a
screen might be used to find fly oncogenes by identifying
genes whose overexpression can lead to the formation of
tumors. Similarly, the UAS/GAL4 system can be used to
express mammalian oncogenes or tumor suppressors
ectopically during Drosophila development to assess their
biological functions.

Another way to drive the heritable overexpression of a
gene in a subset of tissues is the FLP-out technique41,
which is based upon the introduction of the FLP/FRT sys-
tem of yeast into the Drosophila genome42. FLP recombi-
nase catalyzes the site-specific recombination between FLP
recombination target (FRT) sites. An FLP-out construct
consists of a constitutive promoter, followed by an FRT
site, a marker gene with a poly-A (transcriptional termina-
tor) site, a second FRT site and the cDNA of a gene of
interest (Fig. 1). Once this construct is introduced into the
fly genome, the expression of FLP recombinase by a heat-
shock-inducible promoter will excise the DNA between
the FRT sites, leading to a random assortment of cells that
heritably overexpress the gene of interest. The combi-
nation of the FLP-out system with the UAS/GAL4 system
can make this technique even more useful. If the FLP-out
construct drives Gal4 expression, this can, in turn, cause
the heritable expression of any number of UAS–cDNA
constructs. Neufeld et al. have used this approach to deter-
mine the effects of cell-cycle regulators, such as Rbf and
E2F, on cell size, the cell cycle and cell division rate43

(Fig. 1). 
When an interesting phenotype is established by manipu-

lations that either increase or decrease the activity of a
gene of interest, the fly, like other model genetic organ-
isms, can be used to isolate interacting genes by searching
for second site mutations that suppress or enhance the
original phenotype. Such so-called modifier screens are
powerful tools to discover pathway components. For
example, Delta was implicated to interact with the Notch
receptor when mutations in Delta were recovered in a
screen that could suppress the lethality associated with
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certain Notch alleles44. Similarly, a screen for mutations
that can modify the eye phenotype of sevenless mutations
identified components of the ras pathway45. Furthermore,
if overexpression of a mammalian gene in the fly produces
a phenotype that is suitable for a modifier screen, the fly
system can be used to identify other pathway components
without having to clone the fly version of the gene.
Examining the effects of ectopically expressing human
genes in the fly is becoming commonplace46,47, and path-
way components that are identified as a consequence of
such analysis should be good candidates for mammalian
tumorigenesis studies.

As a model genetic organism, like yeast or C. elegans,
the entire genome of the fly can be screened systematically
to identify any gene that, when mutated, affects the mol-
ecular mechanism of tumorigenesis. Such a large-scale
mutagenesis approach is not practical in the mammalian
model system. Furthermore, recent advances in genetic
techniques that are unique to the fly system allow the fly
to be used to more closely mimic cancer development in
humans. Cancer in humans is a clonal phenomenon in
which a somatic cell in an otherwise healthy patient loses
growth control by mutation of one or more cancer-related
genes. As many cancer-related genes are involved in essen-
tial processes during development and conventional
screens only examine homozygous mutant animals,
mutations of these genes will be missed when an animal
dies before the cancer-related phenotype can be detected.
A new type of genetic screen, termed a mosaic screen,
more closely models the situation of a cancer patient and
allows the isolation of novel tumor suppressor genes

(Fig. 2). In a mosaic screen, mutagenized males are crossed
with normal females to produce a population of hetero-
zygous embryos that each carry a distinct newly induced
mutation (Fig. 2b). An FRT site has been inserted near the
centromere on every major chromosome arm so that high
frequency mitotic recombination can be induced between
homologous chromosome arms in the developing 
heterozygous mutant animals to generate homozygous
mutant clones in an otherwise healthy animal48

(Fig. 2a, b). The high frequency of animals that carry
mutant clones, in combination with autonomous cell
markers, also allows for the direct examination of poten-
tial phenotypes in developing and internal tissues48.
Furthermore, because a mitotic recombination event also
produces a wild-type twin-spot cell (or clone), the
mutations that cause subtle phenotypes, such as a change
in growth rate, can be identified by comparing the sizes of
the twin-spot clones49 (Fig. 1). The mosaic screen is also
far more efficient than a standard genetic screen because it
involves one generation instead of three48,50. This tech-
nique has allowed the isolation of many novel genes that
have been missed in conventional genetic screens49,51–53

(Fig. 2d).

The fly as a model of tumorigenesis
A mosaic screen for over-proliferation mutants has been
used successfully to identify several novel tumor suppres-
sors in flies, including the large tumor suppressor (lats;
also known as wts) gene49. Somatic cells mutant for lats
undergo extensive proliferation and form large tumor out-
growths with morphological characteristics similar to

FIGURE 1. The FLP/FRT system 

(a) The expression of GAL4 by the Actin promoter is disrupted by the presence of a transcription terminator (or a marker gene with a poly-A site). (b) Induction of the
FLP recombinase gene causes site-directed recombination between the tandem FLP recombination target (FRT) sites in some cells, leading to the removal of the
transcription terminator. (c) GAL4 is now heritably and constitutively expressed in those cells that have removed the transcription terminator. GAL4, in turn, induces
the expression of several transgenes whose expression is under the control of the GAL4-inducible promoter, UAS. For example, in the wing imaginal disc, UAS–green-
fluorescent protein (GFP) can be used to mark cells fluorescently that also express cancer-related genes, such as E2F (Ref. 43). Fluorescence-activated cell sorter
(FACS) analysis can then be used to monitor changes in cell size and alterations in the cell cycle (DNA content). Furthermore, a comparison of the number of GFP-
expressing cells in clones that do or do not express the gene of interest can be used to determine a change in cell division rate in vivo.
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those of human tumors, confirming that Drosophila can
grow tumors that are comparable with those found in
humans49,54 (Fig. 2d). Furthermore, mice that are deficient
in the mouse lats homolog (Lats1) develop soft-tissue sar-
comas and ovarian stromal cell tumors and exhibit height-
ened sensitivity to carcinogenic treatments55 (Fig. 2e). This
suggests that the underlying mechanism of tumorigenesis
might be conserved as well, and a combination of fly and
mammalian research has pointed to a conserved mecha-
nism of lats function. The human homolog of the lats gene
(LATS1) can be used to suppress tumor growth and rescue
developmental defects in lats mutant flies47. Further fly
research and biochemical studies of LATS1 indicate that
LATS complexes with CDC2 and negatively regulates the
activity of the CDC2/Cyclin A complex47,55. This result
establishes a link between lats and a common target of the
cancer process, the cell cycle. The demonstration that a
previously uncharacterized tumor suppressor gene that
was discovered in the fly can also act as a tumor suppres-
sor gene in the mouse reinforces the value of using the fly

system to identify novel tumor suppressors. More impor-
tantly, the functional conservation of the lats gene suggests
that many components of the LATS pathway are probably
conserved between flies and mammals and the study of
such genes in Drosophila will provide information that is
directly relevant to tumorigenesis in humans.

Expanding role of the fly in cancer research
The future of the fly as a cancer research organism appears
promising on several fronts. As the Drosophila and
human genome projects advance, increasing numbers of
cancer-related candidate genes will be identified. The fly
will provide an excellent system for rapidly learning more
about these genes. Studies in flies, together with similar
work in other model genetic organisms, will provide inform-
ation regarding the conserved molecular and biochemical
properties of the cancer-causing molecules. For example,
characterization of gigas, a fly homolog of a human tumor
suppressor that is involved in the tuberous sclerosis com-
plex (TSC), has shown that its mutation leads to the 

FIGURE 2. Mosaic screens to identify novel tumor suppressors 

(a) Induction of homozygous mutant clones in heterozygous animals by FLP/FRT-mediated mitotic recombination. Homologous chromosomes are illustrated as white and black bars. High
frequency mitotic recombination between chromosome arms can be induced at the FLP recombination target (FRT) sites (arrowhead) by the induction of FLP enzyme. After chromosome
segregation, a daughter cell homozygous for the mutant gene (-/-) can be produced. The mutant cell also lacks the marker gene, allowing it to be distinguished from the wild-type twin-spot
cell (+/+) or the heterozygous cells. (b) The FLP/FRT-mediated mitotic recombination can be used to generate mosaic animals that carry clones of cells that are homozygous for independently
induced mutations. Mutations in tumor suppressors or other genes of interest can be identified in mosaic animals of the first generation. Mosaic flies are a good model for patients with
cancer predisposition syndromes such as those heterozygous for mutated tumor suppressor genes. Loss of the wild-type copy of the tumor suppressor in these patients, or in the fly model (c),
can lead to the development of a tumor (white patch). (d) The tumor suppressor function of large tumor suppressor (lats) is conserved in mammals as (e) mice mutant for the Lats1 homolog
develop soft-tissue sarcomas (see text). 
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development of giant polyploid cells, a phenotype that
resembles human tuberous sclerosis tumors51. In addition,
characterization of the fly homolog of phosphatase and
tensin homolog (PTEN, also known as MMAC1) con-
firmed the results from mammals and C. elegans that
PTEN functions in the insulin pathway and also revealed a
role for PTEN in the regulation of cell size56. On the other
hand, even for those fly homologs of human oncogenes or
tumor suppressors that have been studied, there is still
much work to be done and much to learn. For example,
src was one of the earliest mammalian oncogenes identi-
fied, yet the mechanisms of action of src in tumorigenesis
remains largely unknown. The identification of the
Drosophila src genes was the first attempt to study
homologs of mammalian oncogenes in Drosophila and
future studies of Drosophila src are likely to contribute
significantly towards understanding the src pathway and
the biological processes that it regulates57–60.

In areas in which the fly is not a traditional model sys-
tem, such as cell-cycle checkpoint controls, researchers are
discovering advantages to the fly system and are beginning
to apply it to these issues with a fresh perspective61–63. For
example, a genetic screen for regulators of the radiation-
damage checkpoint in imaginal discs has already recov-
ered a novel gene that had not been identified in yeast
screens (G. Rubin, pers. commun.).

Other processes that are important to cancer biology,
but that have been less amenable to traditional approaches
in molecular oncology, might be good candidates for
future study in the fly. Although many tumor suppressor
mutations have been tracked down through studies of
familial cancer predisposition syndromes64, mutations that
are involved in metastasis have been harder to identify
because they are late events. Experiments with tumors that
are derived from lethal giant larvae (lgl) mutants have
demonstrated that metastasis occurs in the fly65,66. Flies
that are homozygous for lgl mutations do not survive
beyond the larval stage, but brain tumors that are trans-
planted from these mutants into normal adult flies exhibit
metastasis by invading and spreading into distant

organs66. Although lgl homologs have not yet been shown
to be involved in human tumor metastasis, there are 
other lines of evidence that indicate that some of the 
biochemical mechanisms of metastasis, such as an increase
in type IV collagenase, are conserved between flies and
humans65–67.

Other genes that are involved in human tumor metasta-
sis have been shown to have fly homologs. In the mam-
malian system, the nm23 gene was discovered on the basis
of its reduced expression in highly metastatic cell lines68.
This trend was confirmed in several types of human carci-
nomas and melanomas, and the suppressive effect of
nm23 on metastasis was demonstrated by overexpression
in melanoma and breast carcinoma cells in vivo69. Cloning
of nm23 identified it as a homolog of the Drosophila gene
abnormal wing discs (awd)70. Mutations in awd can cause
abnormal tissue morphology and widespread aberrant dif-
ferentiation that is analogous to the changes that occur in
human malignant progression. 

Future directions
The study of tumor suppressors in flies will probably lead
to insights into some fundamental biological processes
that are critical for the understanding of human cancer
biology. For example, multicellular organisms require
size-control mechanisms to determine when organ growth
should be halted. Young imaginal discs transplanted into
adult hosts stop growth once their normal size has been
reached, suggesting that organ size control is both
autonomous and genetic in origin71. Transplantation
experiments in mice indicate that similar size-control
mechanisms operate in mammals72. Furthermore, imaginal
discs can undergo regeneration to form a normal-sized
disc when a small region of the disc is surgically removed,
suggesting that proliferating cells in a developing organ
communicate with one another to maintain a constant
organ size73,74. It has also been shown that DNA repli-
cation and mitosis in growing imaginal discs occur in
small, non-clonal cell clusters throughout the disc75,76,
which is consistent with the notion that proliferation is
regulated by local cell–cell interactions. Mutations in the
lats tumor suppressor have been shown to disrupt the
cell–cell communication mechanism that controls the size
of fly imaginal discs and thus allows the discs to grow
unchecked (Fig. 3). Further study using the fly system
might be useful in learning more about the molecular ori-
gins of the size-control mechanism and the context of its
participation in cancer biology.

Because the fly does not have blood vessels, it cannot
serve as a directly relevant model for studying the aspects
of angiogenesis during tumor development. However, sec-
tions of fly tumors caused by mutations in the lats gene
revealed that these tumors do contain lumen-like struc-
tures that might serve as channels for supplying nutrients
for these fast-growing tissues45,77 (see Fig. 1). Interestingly,
human tumors such as melanomas have now been shown
to develop vascular channels that facilitate tumor perfu-
sion independently of tumor angiogenesis78. Although it is
not clear whether these channel structures in insect and
mammalian tumors are related, fly tumors might provide
a powerful model to study the mechanisms and the biol-
ogy of development of vascular structures in tumors.

The ongoing efforts of the fly community in developing
and improving sophisticated genetic techniques are likely to
further empower Drosophila as a model for cancer research.

FIGURE 3. Lats affects tissue size control

The loss of the large tumor suppressor (lats) gene in Drosophila leads to a disruption in tissue size
control, resulting in giant larvae (a), (left: wild-type third instar larvae; right: lats mutant larvae) and
dramatically enlarged imaginal discs (b), (left: wild-type third instar wing disc; right: lats wing disc).
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For example, the mosaic screens performed so far have
screened one chromosome arm at a time for mutations and
tumorigenic events that require multiple hits on different
chromosomes would have been missed. Future mosaic
screens involving multiple chromosomes might identify new
classes of tumor suppressors or mutations that contribute to
metastasis. With its versatility in addressing many types of
questions related to cancer biology and the demonstration of

its direct relevance to mammalian tumorigenesis, the fly 
system has a vital role to play in the future of cancer
research.
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